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The authors have solved the problem of a liquid flow over the surface of a rotating conic heat-transfer device 

with thermal boundary conditions of the second kind with account of heat losses to the vapor-gas phase. 

Relations have been obtained for calculation of the mean mass temperature, the Nusselt number, and other 

characteristics of the heating process of the film. 

In the chemical industry use is made of centrifugal film heat exchangers, whose main component is rotating 

heated (cooled) heat transfer devices in form of discs and cones, over the surface of which the treated liquid is 

spread under the action of centrifugal forces [1 ]. Because of the presence of a thin film, these apparatuses are very 

efficient. The heating of a nonisothermal viscous flow in a field of centrifugal forces was considered most thoroughly 

in [2 ]. However, the problem was solved with the assumption of smallness of the inertial terms in the equation of 

motion. So, it is interesting to include the effect of the inertial terms on the flow hydrodynamics and, consequently, 

on the heat-transfer process. 
We will consider the axisymmetric flow of a thin film of viscous liquid over the surface of a conic heat 

transfer apparatus (Fig. 1). Motion of the liquid is described in the coordinate system l, T, which is rigidly coupled 

with the rotating cone. The flow is steady and laminar. The temperature To of the liquid fed to the cone is constant 

and equal to the temperature of the ambient gas. The heat flux over the conic surface is constant in time and over 

the radius and equal to qw. The effect of the temperature nonuniformity of the flow on its hydrodynamics is 

exhibited through the appropriate deformation rates; therefore, the liquid viscosity IX is introduced as a function of 

the temperature T and expressed as an expansion: 

IXO/I x = 1 + a 1 (T - TO) + a 2 (T - TO) 2 + . . .  (1) 

The number of terms in expansion (1) depends on the required calculation accuracy. In view of the fact 

that the absolute heat flux for heating of the film flow over the conic surface is not high, in engineering calculations 

a linear approximation in relation (1) is quite sufficienr the preservation of terms of the second and higher orders 

does not lead to mathematical complications, but the resultant analytical formulas become more cumbersome. 

Assumptions conventional for thin-film problems lead to the following system of equations describing the 

flow and heating of the film: 

O I OVl I OVl OVl p (w2l sin r/ -- g COS r/) + ~z # -~z = v l - ~  + vz 0-'~ ; (2) 

OT OT O2T 
v t -  + v z -  = a - - "  (3) 
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Fig. 1. Schematic drawing of the flow. 

Ov l v l Ov z 
O--T + T + - ~ [  = O. 

(4) 

If heating of the film is considered from the point of view of development of a thermal boundary layer 

(TBL) in the film, three zones can be distinguished reasonably in the flow: the initial thermal section, the region 

of heating of the film, and the region of steady-state heat transfer. Now, we will consider heat transfer processes 

in each of the zones. 

Initial Thermal Section. Within the initial thermal section in the wall region of the liquid film a TBL appears 

and expands down the flow. At the lower boundary of the TBL the tempearture of the liquid is equal to the 
temperature of the heated cone TO, which varies over the radius and depends on the value of the heat flux qw. At 
the upper boundary, T = T 0. If its is assumed that the heat flux enters the liquid starting from a certain radius Ro, 

the TBL arises at the boundary R 0. The other boundary of the initial thermal section will certainly be at the radius 

Rl at which the thickness of the TBL is equal to that of the film. 

I t  seems necessa ry  that  the principles for choosing the initial value of Ro be strictly defined. 

Hydrodynamically, in a liquid spreading over the surface of a rotating cone the following zones can be distinguished: 

a central zone, in which the liquid flow contacts the cone and convective forces exceed substantially centrifugal 

forces; an intermediate zone, in which these forces are of the same order of magnitude; and a zone of a film flow, 

in which centrifugal forces exceed substantially inertia forces, the development of the velocity boundary layer has 

been completed, and the flow has become a laminar film flow. The coordinate of the initial zone of the film flow 
R' 0 can be defined by the formula [3 ]: 

(5) 

In solution of the problem it is assumed that the condition R0 -> R0 is satisfied. 

In view of the above statements, the heat transfer process satisfies the following boundary and initial 

conditions: 

z = 0 : 3 = 3 0 ,  vl= Vz, q w = - 2 ~ T  = c o n s t ;  

dVl Ov*l OT 
z = A :  v l  = v , O z  - ' T = T o ,  

z = 6 0 :  3 = 0 ,  T = T o ,  l = / 0 :  A = 0 ;  l = l l ;  A = ~ 0 -  (6) 

As the unknown parameters change monotonically, for solution of the problem we use averaging by 

integration of Eqs. (2) and (3) over the coordinate z from 0 to 6o [4 ]. Using continuity Eq. (4), Eqs. (2) and (3) 
can be transformed to: 
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ll dld l ~ v~dz + -fl -dld l 60f v;2dz = F t 60 - ~-r0 ; (7) 
0 A 

11 dld l f ~z z=O" 

Assuming that the temperature of the liquid changes smoothly over the coordinate z within the TBL with 
chosen boundary conditions (6), it is possible to find the temperature profile: 

0 = ~- 1 - (9) 

Relation (9) is expressed in dimensionless form: 0 = (T - To)/(qwfo/;t); (s, 6) = (A, z)/6o. Then expansion 

(1) expressed in terms of the parameters of the TBL is written as 

P._.OO = 1 + KIO + K202 + . , Ki = ai (10) 
[A " "  

As was shown in [5 ], the shear stress can be approximated as a single-valued function of the film thickness, 

whose expansion coefficients are found from boundary condtiions (6). If we take only the first two terms of the 

expansion, we can write: 

Ovl r~176 (1 - 6) (11) 
o-~ = -~ - -  

Integration of Eq. (11) results in the following expressions for the meridional velocity within and outside 

the TBL: 

f Kls[ -  -7+T - +  + -  - + 2  - - -  �9 
/a 0 s 2 3s s 4s 2 ' 

(12) 

62 K 1 ] 
v T -  to60 6 -  + ( 4 s - s  2) 

/-'o -2- ~ " 

The unknown z 0 is found from the condition of a constant flow rate in the initial thermal section: 

(13) 

Qo = 2~/3o sin 7/ Is 1 ] f vtd6 + f vTd6 . 
0 s 

(14) 

Eventually, we have 

a~'0Q0 0 5 )  
�9 t" 0 = 

KIS2 ] 
2~rl6o 2 sin r/ 1 + ~ (10 - 5s + s 2) 

Analysis of relation (15) has shown that, first, the value of the shear stress on the conic wall is lower in 
the case of a nonisothermal flow as compared with an isothermal flow and, second, it decreases as l and s rise. 

Substitution of (9), (12), and (13) and integration transform Eqs. (7) and (8) to homogeneous equations 

of the form 
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Fig. 2. Variation of the thickness of the TBL over the radius (qw = 7.5 

kW/m2): 1) Qo = 46.3"10-6 m3/sec; to-- 31.4 sec -l', C = 65%', 2) 

31.8.10-6; 31.4; 65; 3) 31.8.10-6; 31.4; 25; 4) 31.8.10-6; 125.6; 25. R, m. 

d6 o ds 
A1 - ~  + B1 -~  = CI ; (16) 

d60 ds (17) 
A2-d-F + ~2 ~ = c2, 

(A1,2; B1,2; CI,2) = f ( 6  0 , s ,  Q-o, l , / ~ 0 ,  ~ ,  co), 

These equations constitute a system for finding the unknown parameters 60 and z in terms of which hydrodynamic 

and heat transfer characteristics of the flow are expressed. For example, for calculation of the most important 

integral characteristic of the process, the flow rate-average temperature ~, following the formula is obtained: 

Jr/fi0T0s sin r 1 1 s KlS s (18) 
= ~toQ 0 12 60 + ~  1 - f f  . 

The local heat transfer coefficient expressed in terms of the temperature gradient on the conic surface is 

found from the expression 

22 
a - . (19) 

60 (s - 2~ ) 

In the initial thermal section the dimensionless heat transfer coefficient (the Nusselt number) is found 

from the relation 

4as60 8s (20) 
N u - - - - - -  

2 s - 2~ 

As can be seen from Eq. (20), the relations governing heat transfer in the TBL depend mainly on the 

thickness of the thermal boundary layer s. The dynamics of TBL development is shown in Fig. 2. In the initial 

zone one can see a sharp increase in the thickness of the TBL. In this case the liquid flow rate, the angular velocity 
of the heat transfer device, and the preset heat flux density have a substantial effect on the heat transfer process. 
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Fig. 3. Variation of the film thickness and TBL over the radius for a glycerin 

solution (Qo -- 46.3.10 -6 m3/sec; w -- 31.4 sec-1; C -- 25%: l) 5 o =f iR) ,  qw 

= 0; 2) 5o = f i R ) ,  qw = 188.8 kW/m2; 3) A --fiR), qw = 188.8 kW/m 2. 50, m. 

2. The Region of Film Heating. In this region the liquid is involved in heat transfer throughout the film 
thickness. The temperature of the film surface increases gradually and heat losses to the vapor-gas medium grow 

simultaneously due to (a) conduction heat transfer from the liquid-gas interface qc and (b) evaporation of some of 
the liquid qe. Thus, the heat flux from the surface of the film will be equal to 

q =  qc + qe =a l i q .g (Ts -  Tg) at" fir (Psat-Pg) $ �9 

R T s 
(21) 

Using the analogy method, expresson (21) can be transformed to the form [2] 

r ] 
- -  * (Psat -- Pg) �9 (22) 

R C p g p g T  s 

Since the saturated vapor pressure Psat is a single-valued function of temperature, the heat flux q will be, 
as a whole, only a function of the temperature of the film Ts. 

At the beginning of the second region (l -- ll), the temperature of the film surface is T 0. The heating region 

ends at the site where the heat fluxes (the flux entering the film and the flux scattered by the film to the vapor-gas 

medium) become equal. At that moment the film stops receiving heat from the heater and a linear temperature 
prodile develops in it due to Fourier's law. 

Thus, for the second region the boundary conditions have the form: 

00 
6 = 0 :  V l = V z " ~ O ,  0- - -~=-1 ;  

Ov I O0 q (23) 
5 = 1 :  0---~-=0, O = Os , 0-0-0-0-~ = qw 

1 = l i :  0 s = 0 ;  l = 1 2 :  q = q w "  

Methods of solution similar to those used for the region in which the TBL is developed can be used to find 
the temperature distribution across the film and the meridional component of the velocity: 

0 =  1 + 0  s - 5 - N ( 1 - 5 2  ) ;  (24) 

52 53 54 } 
~~176 [ I + K I ( I + 0 s - N )  ] 5 -  [1 + K l ( 2 + 0 s - N  ) I T +  K l ( N +  1 ) - ~ - - K 1 N -  ~- . v l -- tz 0 

(25) 
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Fig. 4. Dynamics of heating of the wall of the heat t ransfer  device (Qo = 

46.3 .10 -6  m3/sec, co = 31.4 sec -1", C = 25%: 1) qw = 47.2 kW/m2; 2) 188.8. 

Tc - TO, ~ 

Here N = 0.5(1 - q/qw). 
For calculation of the shear  stress on the conic wall in the second region, the following formula is obtained: 

3/z~176 (26) 
1" 0 = 

2 ~ / ~  sin ~/ 1 + - ~  (15 + 200 s - 18N) 

In the second region the dimensionless heat t ransfer  coefficient (the Nusselt number)  is defined by 

4a60 80 + 4K 1 (15 + 200 s - 18N) 
Nu - - (27) 

In expression (27) the difference between the local surface temperature  of the heat t ransfer  cone and the 

mean mass temperature  of the liquid film in the cress-section considered is also used as a temperature  head in 

determination of a. 

Since in the second region heating of the surface of the liquid film is only started, it can be assumed that 

when considerable heat is t ransferred to the vapor-gas phase due to evaporation, the mass loss remains insignificant. 

Together  with the assumptions made earlier here, this assumption allows us to transform Eqs. (2)-(4) ,  which are 

also valid in the second region, to the form: ~ 

1 d ~0 
- - -  v t d z  = F 160 - --~, l dl l f 2 30. 

0 
(28) 

6 o 

1 d l f Tvflz = ~ (qw - q) (29) 
l dl o 

Substitution of relations (24) and (25) also transforms Eqs. (28) and (29) to a system of differential 

equations (16) and (17). In this case the unknown quantities are 6o and 0 s and in the second region all the other  

parameters of the film flow and heating are expressed in terms of them. 

Having the analytical relations, obtained it is possible to estimate the dynamics and behavior of all the 

other  parameters.  For example, at the end of the second zone the Nusselt number  tends asymptotically to 6.4. It 

should be noted that in gravity film flows Nu is also 6.4 [6 ]. 
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Fig. 5. Plot of the mean mass temperature of the liquid versus qw and Qo (o: 
=31.4 sec -Z ;C=25%,R=0.1  m): l) f f - To )= f ( gw ) , ( 20  =17.3"10-6 
ma/sec; 2) ( T  - TO) = f ( O 0 ) ,  qw  = 30 kW/m2; Q0, ma/sec. 

3. Zone of Steady-State Heat Transfer. In this zone the whole liquid film is heated, the temperature 
distribution is linear, the surface temperature is constant, and the temperature drop between the conic and film 
surfaces is 

T c - T s = q v t 5 0 / 2 .  (30) 

In the third region intense mass transfer occurs due to evaporation, which results in loss of mass of the 

flowing liquid, and appropriate choice of the operation parameters can lead to complete drying of the entire film. 

In view of the balance considerations given in [2 ], one can estimate the radius at which the film will be dried out. 
Calculations carried out with the relations given here earlier have shown that inclusion of the inertial terms 

in Eq. (2) leads to a 3 - 8 %  decrease in the film thickness, depending on the operation parameters, which, in turn, 

affect the dynamics of the process of film heating. It has been found by calculations and experimen~ that heating 

of the cone decreases substantially the thickness of the liquid film. In particular, at the end of the TBL at s = 1 

the difference between the values of ~0 for isothermal and nonisothermal flows can be 15% (Fig. 3). In the studies, 

aqueous solutions of glycerin at different concentrations were used as model liquids, whose physical and thermal 

properties are given in [7 ]. It should be noted that this difference ibcreased with an increase in the heat flux and 

concentration. For heat-transfer problems with boundary conditions of the second kind (qw = const), the surface 

temperature of the heat transfer device is also an unkr~own value. The behavior of the surface temperature of the 

heat exchanger over the radius is shown in Fig. 4, and the effect of the heat-flux density on the mean mass 

temperature is presented in Fig. 5. 
Experimental studies on heating of aqueous solutions of glycerin on a flat disk with a radius of 0.2 m heated 

by electric current have confirmed the validity of the obtained relations. For example, the difference between the 
experimental and calculated mean mass temperatures is 10-20%.  Because of this, the relations obtained in this 
work can be recommended for the design of centrifugal heat and mass transfer apparatus. 

N O T A T I O N  

Vl, vz ,  meridional and normal velocity components, m/sec; w, angular velocity, sec-  l;/z, viscosity, Pa. sec; 
a thermal diffusivity, m2/sec; p, liquid density , ma/sec; g, gravity acceleration, m2/sec; r, shear stress, Pa; q, 

heat flux density, W/m2; 2, thermal conductivity, W/(m. K); A, thickness of TBL, m; s, dimensionless thickness 
of TBL; Qo, liquid flow rate, m3/sec; 50, thickness of the liquid film, m; r, specific evaporation rate, J/kg; fly, 
mass-transfer coefficient, m/sec; a, heat transfer coefficient, W/(m 2. K) ; R*, gas constant, J/(kg- K) ; c o, specific 
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heat, J / (kg .  K); Psat, saturated vapor pressure, Pa; v, kinematic viscosity, m2/sec; D, diffusion coefficient, m2/sec; 
F1, projection of the mass force onto the coordinate axis l, -m2/sec .  Subscripts: g, gas medium; s, surface of the 

liquid film; 0, initial value of the parameter. 
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